Dans la réaction suivante, quelles espèces jouent le rôle de l'acide ?

$$HPO_4^{2-} + NH_4^+ \longleftrightarrow H_2PO_4^- + NH_3$$

- 1) HPO₄²-, NH₃
- 2) HPO₄²⁻, H2PO₄⁻
- 3) NH₄⁺, H₂PO₄⁻
- 4) NH₄⁺, NH₃

Dans la réaction suivante, quelles espèces jouent le rôle de l'acide ?

$$HPO_4^{2-} + NH_4^+ \longleftrightarrow H_2PO_4^- + NH_3$$

- 1) HPO₄²-, NH₃
- 2) HPO₄²⁻, H2PO₄⁻
- 3) NH₄⁺, H₂PO₄⁻
- 4) NH₄⁺, NH₃

 NH^{4+} et $H_2PO_4^-$ Donnent un ion H+ (ou $H(H_2O)_n^{+)}$

Quelle concentration d'acide nitrique HNO_3 (pK_a= -2) doit être ajoutée à de l'eau à 25 ° C pour obtenir [OH-] = 10^{-9} M ? (Négliger la variation de volume)

- 1) $10^{-9} \,\mathrm{M}$
- 10^{-5} M
- $3) 10^{-1} M$

Quelle concentration d'acide nitrique HNO_3 (pK_a= -2) doit être ajoutée à de l'eau à 25 ° C pour obtenir [OH-] = 10^{-9} M ?

- 1) 10⁻⁹ M
- 2) 10⁻⁵ M
- 3) 10⁻¹ M

Acide nitrique : (pKa=-2) acide fort complètement dissocié

pH=-log
$$a_{H+}$$
=-log ([H⁺]/1M)
pOH = -log a_{OH-} -log ([OH⁻]/1M)

$$[H^+]= 10^{-5} M = [HNO_3]_{initial}$$

Est-ce que la dissolution du sel NaCl dans l'eau donne une solution

1)acide

2)neutre

3)basique

Est-ce que la dissolution du sel NaCl dans l'eau donne une solution

1)acide

2)neutre

3)basique

Na+ (cation, groupe 1): acidité négligeable Cl- base conjuguée de HCl (acide fort) : basicité négligeable ni Na⁺ ni Cl⁻ ne réagissent avec l'eau, ce sont des ions spectateurs qui n'influencent pas le pH

Est-ce que la dissolution du sel NH₄Cl dans l'eau donne une solution

1)acide

$$pK_a (NH_4^+, NH_3) = 9.25$$

2)neutre

3)basique

Est-ce que la dissolution du sel NH₄Cl dans l'eau donne une solution

1)acide

2)neutre

3)basique

NH4+: acide conjugué d'une base faible: acide faible

CI-: spectateur

Acide faible dans l'eau

Quelle quantité de CH₃COONa devez vous ajouter à une solution aqueuse de 10⁻² M CH₃COOH pour obtenir une solution tampon à un pH de 3.75. (On néglige les effets de la dilution)

pKa (
$$CH_3COOH$$
) = 4.75

- 1) 10⁻² M CH₃COONa
- 2) 10⁻¹ M CH₃COONa
- 3) 10^{-3} M CH₃COONa

Quelle quantité de CH3COONa doit on ajouter à une solution aqueuse de 10⁻² M CH3COOH pour obtenir une solution tampon avec un pH de 3.75. (On néglige les effets de la dilution)

$$pK_a (CH_3COOH) = 4.75$$

- 1) 10⁻² M CH₃COONa
- 2) 10⁻¹ M CH₃COONa
- 3) 10^{-3} M CH₃COONa

$$pH = pK_a + log \frac{C_b}{C_a} = 4.75 + log \frac{CH3COO^-}{CH3COOH}$$

Quelle est la charge de l'acide aminé Glycine à pH 2

NH₂-CH₂-COOH

- pKa COOH/COO: 4.7
- pKa RNH₃+/RNH₂: 9

- a) -1
- b) 0
- c) 1

Quelle est la charge de l'acide aminé Glycine à pH 2

NH₂-CH₂-COOH

pKa COOH/COO: 4.7

pKa RNH₃+/RNH₂: 9

- a) -1
- b) 0
- c) 1

NH₃⁺-CH₂-COOH Espèce totalement protonée à un pH <<pKa1 et pka2